Quatre effets, phénomènes et paradoxes de la médecine par Peter Kleist

Quatre effets, phénomènes et paradoxes de la médecine par Peter Kleist

------------------------
Rédigé le 22/12/2019
Par Docteurdu16
------------------------

Calendrier de l'Avent médical de la médecine 2019, Jour 22







Cet article est lumineux, clair, éclatant et épatant : voir ICI pour sa lecture complète. Je le reproduis tel quel pour les définitions et les conclusions.




L’effet Hawthorne peut conduire à une surestimation de l’efficacité dans les groupes contrôle des essais cliniques et rendre plus difficile, voire impossible, la mise en évidence de l’efficacité d’un traitement. Des traitements standards non spécifiés dans les groupes de comparaison d’études contrôlées ou dans le cadre d’études d’observation ne sont souvent pas représentatifs d’un traitement standard dans des conditions de tous les jours.






Les études observationnelles non contrôlées avec des patients sélectionnés ayant des valeurs initiales élevées ou basses surestiment l’effet thérapeutique réel – l’inclusion d’un groupe contrôle prend ici toute son importance. Les distorsions de type «regression to the mean» peuvent alors être neutralisées par l’effet de soustraction de l’action du traitement testé et du traitement comparatif. Les améliorations observées sous placebo sont – en partie du moins – aussi dues à une régression à la moyenne. S’il existe un risque de phénomène de type «regression to the mean», l’inclusion de patients dans les études cliniques devrait être effectuée sur la base de me- sures initiales multiples.






Des facteurs déterminants inconnus peuvent fausser les résultats des études d’observation, en
particulier des études de cas témoins. Un nombre élevé de cas et des niveaux de signification statistiques n’offrent par ailleurs aucune protection contre les conclusions erronées. En présence d’un paradoxe de Simpson, nous ne savons en réalité pas la vérité: en effet, les analyses des sous-groupes peuvent elles-mêmes être influencées par une autre variable inconnue, qui, si l’on en tient compte, pourrait à nouveau inverser le résultat. C’est pourquoi il convient de choisir un protocole d’étude randomisé et contrôlé chaque fois que cela est possible. Dans les méta-analyses publiées, on veillera à la méthode utilisée pour calculer le NNT.






Ne faites pas aveuglément confiance aux résultats d’études utilisant des groupes contrôles historiques. Les progrès réalisés dans le diagnostic ou une augmentation artificielle de la prévalence d’une maladie peuvent simuler une amélioration du pronostic, qui ne doit pas être attribuée à une modification des standards de traitement ou à un nouveau médicament apparu sur le marché.


Il faut toujours être très prudent en lisant les études contrôlées et à fortiori les études non contrôlées (cohortes, cas-témoins, ouvertes ouvertes). Et l'effet placebo est très lié à ces paradoxes.